26 research outputs found

    The Globular Cluster Populations of Giant Galaxies: Mosaic Imaging of Five Moderate-Luminosity Early-Type Galaxies

    Get PDF
    This paper presents results from wide-field imaging of the globular cluster (GC) systems of five intermediate-luminosity (M_V ~-21 to -22) early-type galaxies. The aim is to accurately quantify the global properties of the GC systems by measuring them out to large radii. We obtained BVR imaging of four lenticular galaxies (NGC 5866, NGC 4762, NGC 4754, NGC 3384) and one elliptical galaxy (NGC 5813) using the KPNO 4m telescope and MOSAIC imager and traced the GC population to projected galactocentric radii ranging from ~20 kpc to 120 kpc. We combine our imaging with Hubble Space Telescope data to measure the GC surface density close to the galaxy center. We calculate the total number of GCs (N_GC) from the integrated radial profile and find N_GC = 340 +/- 80 for NGC 5866, N_GC = 2900 +/- 400 for NGC 5813, N_GC = 270 +/- 30 for NGC 4762, N_GC = 115 +/- 15$ for NGC 4754, and N_GC = 120 +/- 30 for NGC 3384. The measured GC specific frequencies are S_N between 0.6 and 3.6 and T in the range 0.9 to 4.2. These values are consistent with the mean specific frequencies for the galaxies' morphological types found by our survey and other published data. Three galaxies (NGC 5866, NGC 5813, NGC 4762) had sufficient numbers of GC candidates to investigate color bimodality and color gradients in the GC systems. NGC 5813 shows strong evidence (>3 sigma) for bimodality and a B-R color gradient resulting from a more centrally concentrated red (metal-rich) GC subpopulation. We find no evidence for statistically significant color gradients in the other two galaxies.Comment: 61 pages, 21 figures, 11 tables. Accepted for publication in The Astronomical Journa

    The Infrared Light Curve of SN 2011fe in M101 and the Distance to M101

    Get PDF
    We present near-infrared light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting 14 days before maximum brightness in the B band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera. When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch ofB-band maximum of 10.85 ± 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depending on which absolute calibration for Type Ia SNe is used

    Time-Series Ensemble Photometry and the Search for Variable Stars in the Open Cluster M11

    Get PDF
    This work presents the first large-scale photometric variability survey of the intermediate age (~200 Myr) open cluster M11. Thirteen nights of data over two observing seasons were analyzed (using crowded field and ensemble photometry techniques) to obtain high relative precision photometry. In this study we focus on the detection of candidate member variable stars for follow-up studies. A total of 39 variable stars were detected and can be categorized as follows: 1 irregular (probably pulsating) variable, 6 delta Scuti variables, 14 detached eclipsing binary systems, 17 W UMa variables, and 1 unidentified/candidate variable. While previous proper motion studies allow for cluster membership determination for the brightest stars, we find that membership determination is significantly hampered below V=15,R=15.5 by the large population of field stars overlapping the cluster MS. Of the brightest detected variables that have a high likelihood of cluster membership, we find five systems where further work could help constrain theoretical stellar models, including one potential W UMa member of this young cluster.Comment: 38 pages, 13 figures, accepted for December 2005 AJ, high-resolution version available upon reques

    The Unusual Luminosity Function of the Globular Cluster M10

    Get PDF
    We present the I-band luminosity function of the differentially reddened globular cluster M10. We combine photometric analysis derived from wide-field (23' x 23') images that include the outer regions of the cluster and high-resolution images of the cluster core. After making corrections for incompleteness and field star contamination, we find that the relative numbers of stars on the lower giant branch and near the main-sequence turnoff are in good agreement with theoretical predictions. However, we detect significant (> 6 \sigma) excesses of red giant branch stars above and below the red giant branch bump using a new statistic (a population ratio) for testing relative evolutionary timescales of main-sequence and red giant stars. The statistic is insensitive to assumed cluster chemical composition, age, and main-sequence mass function. The excess number of red giants cannot be explained by reasonable systematic errors in our assumed cluster chemical composition, age, or main-sequence mass function. Moreover, M10 shows excesses when compared to the cluster M12, which has nearly identical metallicity, age, and color-magnitude diagram morphology. We discuss possible reasons for this anomaly, finding that the most likely cause is a mass function slope that shows significant variations as a function of mass.Comment: 31 pages, 12 figures, accepted for Ap

    Evidence That Hydra I is a Tidally Disrupting Milky Way Dwarf Galaxy

    Get PDF
    The Eastern Banded Structure (EBS) and Hydra I halo overdensities are very nearby (d ~ 10 kpc) objects discovered in Sloan Digital Sky Survey (SDSS) data. Previous studies of the region have shown that EBS and Hydra I are spatially coincident, cold structures at the same distance, suggesting that Hydra I may be the EBS's progenitor. We combine new wide-field Dark Energy Camera (DECam) imaging and MMT/Hectochelle spectroscopic observations of Hydra I with SDSS archival spectroscopic observations to quantify Hydra I's present-day chemodynamical properties, and to infer whether it originated as a star cluster or dwarf galaxy. While previous work using shallow SDSS imaging assumed a standard old, metal-poor stellar population, our deeper DECam imaging reveals that Hydra I has a thin, well-defined main sequence turnoff of intermediate age (~5–6 Gyr) and metallicity ([Fe/H] = −0.9 dex). We measure statistically significant spreads in both the iron and alpha-element abundances of σ_[(Fe)/H}= 0.13 ± 0.02 dex and σ_[ɑ/Fe] = 0.09 ± 0.03 dex, respectively, and place upper limits on both the rotation and its proper motion. Hydra I's intermediate age and [Fe/H]—as well as its low [α/Fe], apparent [Fe/H] spread, and present-day low luminosity—suggest that its progenitor was a dwarf galaxy, which has subsequently lost more than 99.99% of its stellar mass

    The Globular Cluster Population of NGC 7457: Clues to the Evolution of Field S0 Galaxies

    Get PDF
    In this paper we present the results of a wide-field imaging study of the globular cluster (GC) system of the field S0 galaxy NGC 7457. To derive the global properties of the GC system, we obtained deep BVR images with the WIYN 3.5 m telescope and Minimosaic Imager and studied the GC population of NGC 7457 to a projected radius of approximately 30 kpc. Our ground-based data were combined with archival and published Hubble Space Telescope data to probe the properties of the GC system close to the galaxy center and reduce contamination in the GC candidate sample from foreground stars and background galaxies. We performed surface photometry of NGC 7457 and compared the galaxy's surface brightness profile with the surface density profile of the GC system. The profiles have similar shapes in the inner 1 arcminute (3.9 kpc), but the GC system profile appears to flatten relative to the galaxy light at larger radii. The GC system of NGC 7457 is noticeably elliptical in our images; we measure an ellipticity of 0.66 +/- 0.14 for the GC distribution, which is consistent with our measured ellipticity of the galaxy light. We integrated the radial surface density profile of the GC system to derive a total number of GCs N_GC = 210 +/- 30. The GC specific frequency normalized by the galaxy luminosity and mass are S_N = 3.1 +/- 0.7 and T = 4.8 +/- 1.1, respectively. Comparing the derived GC system properties and other empirical data for NGC 7457 to S0 formation scenarios suggests that this field S0 galaxy may have formed in an unequal-mass merger.Comment: 40 pages, 10 figures, accepted for publication in The Astrophysical Journa
    corecore